

Val Lewington

An Academic Health Sciences Centre for London

Pioneering better health for all

Recent advances in alpha particle therapy

King's College Hospital

Speaker honoraria, Advisory Board member

Advisory Board member

Advisory Board member and speaker honoraria

Bayer AG Oncoinvent Advanced Accelerator Applications "An agent that delivers systemic radiation selectively to cancer cells and the tumour microenvironment to control cancer while minimising toxicity"

Targeted Alpha Therapy Working Group 2017

Alpha vs Beta particle characteristics

	Alpha
Relative particle mass	7000
Range in tissue (µm)	40 - 100
LET (keV/µm)	60 - 300
lon pairs/µm	2000 - 7000

LET Linear energy transfer

📔 🕴 🚺 🗰 🖬 🖬 🖌 🕴 🕴 KING'S HEALTH PARTNERS

Radiation induced DNA damage and cytotoxicity

Low LET eg β^-

- Sparse ionisation events
- Individual DNA lesions eg single strand DNA breaks
- Repairable using opposite strand as template
- Low probability of cell death

High LET $eg \alpha$

- Multiple ionisation events
- Double strand DNA break clusters
- Difficult to repair
- Loss of chromosomal content and high probability of cell death

Relative radiobiological effectiveness

(LET) emitters. Abbreviation: RBE, relative biological effectiveness.

McDevitt MR et al. Annu Rev Biomed Eng 2018 20;73-93

Cellular Response to α irradiation ¹

DSB repair failure

- •Apoptosis programmed cell death²
- •Necrosis premature cell death by autolysis
- •Cell cycle arrest cell cycle delay and arrest at cell cycle checkpoints²
- •Autophagy intracellular components undergo lysosome-mediated self-digestion³

 α particle

Double-stranded DNA th break

- DSB mis-repair chromosome aberations & mitotic cell death
 - No known mechanism of resistance to α particle irradiation
 - Oxygen concentration independent
 - Cell cycle independent

1. Dekempeneer Y et al. Expert Opin Biol Ther 2016;16:1035–1047. 2. Kassis Al. Semin Nucl Med 2008;38:358–366 3. Netes Maie Retal. TH PARTNERS Autophagy 2016;12:245–260. 4. Ceder J, Elgqvist J. Front Oncol 2017;6:1–6.

α particle biological impact

- Oxidising events via water radiolysis¹
- High daughter isotope recoil energy²
- Unstable daughter isotope:chelator chemical bonds may allow daughter atom escape²

- Radiation-induced bystander effect
 - nontargeted cells damaged independently of direct radiation exposure²

1. Azzam El, Jay-Gerin JP, Pain D. *Cancer Lett* 2012;48–60. **2.** Dekempeneer Y *et al* KING'S HEALTH PARTNERS *Expert Opin Biol Ther* 2016;16:1035–1047.

EBRT and photon therapy tumour sensitivity to cytotoxic T lymphocytes Sub lethal ²²³Ra exposure in vitro (prostate, breast, lung cancer cell lines)

- increased CTL mediated lysis via specific antigens
- Increased protein expression to enhance antigen presentation
- Potential for combining α treatment with immunotherapies eg
 cancer vaccines that expand endogenous antigen-specific T cell
 populations

CTL cytotoxic T lymphocytes

Physical half life

- short to deliver high dose rate
 - to mitigate radiation toxicity
- long to allow production, preparation, distribution, administration

Daughter isotope characteristics

- short half life to ensure rapid clearance
 - decay energy confined to tumour target

Chemical properties - biodistribution

- compounding

Biological Sites of Deposition

Essential considerations

- Physiological uptake
 Biological sites of deposition
 potential for normal tissue toxicity
- In vivo radioconjugate stability Radioconjugates susceptible to catabolism and radiolysis

α-particle- emitting radionuclide	Biological uptake
Actinium-225	Bone and liver
Astatine-211	Thyroid, gut, and lungs
Bismuth-213	Kidney
Lead-212	Red blood cells and bone
Radium-223	Bone
Thorium-227	Bone

Currently available α particle emitting radionuclides

Isotope	Daughter isotopes	Physical half-life	Emission (%)
²¹¹ At	_	7.2 h	α (41.8%)
	²¹¹ Po	516 ms	α (100%)
²²⁵ AC	- ²²¹ Fr ²¹⁷ At → ²¹³ Bi ²¹³ Po	10 d 4.9 min 32.3 ms 45.6 min 4.2 μs	α (100%) α (100%) α (99.98%)/β (0.01%) α (2.2%)/β (97.8%) α (100%)
²¹³ Bi	_	45.6 min	α (2.2%)/β (97.8%)
	²¹³ Po	4.2	α (100%)
²¹² Bi	_	61 min	α (36%)/β (64%)
	²¹² Po	298 ns	α (100%)
²¹² Pb	-	10.64 h	β (100%)
	²¹² Bi	61 min	α (36%)/β (64%)
	²¹² Po	0.3 μs	α (100%)
²²³ Ra	–	11.4 d	α (100%)
	²¹⁹ Rn	4 s	α (100%)
	²¹⁵ Po	1.8 ms	α (100%)
	²¹¹ Bi	2.14 min	α (99.7%)/β (0.3%)
²²⁷ Th	−	18.72 d	α (100%)
	→ ²²³ Ra	11.4 d	α (100%)
	²¹⁹ Rn	4 s	α (100%)
	²¹⁵ Po	1.8 ms	α (100%)
	²¹¹ Bi	2.14 min	α (99.7%)/β (0.3%)

Dekempeneer Y et al. Expert Opin Biol Ther 2016;16:1035–1047.

α particle emitting Isotope production

Isotope	Source
Actinium-225	 Natural decay of uranium-233 in Oak Ridge National Laboratory¹ Accelerator-based methods¹
Astatine-211	 Bombardment of natural bismuth with α-particles in a cyclotron¹
Bismuth-213	 Purified from actinium-225 generator¹
Radium-223	 Purified from actinium-227 generator²
Thorium-227	 Purified from actinium-227 generator³

Targeting options

Stable radio conjugation in vivo

- α emission energy
- recoil daughter kinetic energy
- daughter isotope binding to chelator

i Molecular targeting

Radium 223

Radium-223 physical properties

Adapted from Henriksen et al. Cancer Res 2002;62:3120-5.

Kassis AI. Semin Nucl Med 2008;38:358–66; Brechbiel. Dalton Trans 2007;43:4918–28. Nuclides 2000, Nuclide Explores, Institute of Transanani wite Regiments. Karlsruhe, Germany (1999) Version 1.0

Decay energy distribution

²²³Ra impact

- Direct effect on CaP cells
- Suppresses tumour induced abnormal bone formation

ALSYMPCA Primary endpoint Overall Survival

30% reduction in risk of death (HR=0.70) for patients treated with ²²³ Ra

CI, confidence interval; HR, hazard ratio; OS, overall survival. Parker C, et al. *N Engl J Med.* 2013;369(3):213–223.

I IIII IIII IIII IIII IIII KING'S HEALTH PARTNERS

ALSYMPCA Secondary endpoint Time to 1st SSE

BSoC, Best standard of care; CI, confidence interval; HR, hazard ratio; SSE, symptomatic skeletal event

Parker C, et al. N Engl J Med. 2013;369(3):213–223

ALSYMPCA Adverse events

	All Grades		Grades 3 or 4	
Adverse Events n (%)	²²³ Radium (n = 600)	Placebo (n = 301)	²²³ Radium (n = 600)	Placebo (n = 301)
Haematological				
Anaemia	187 (31)	92 (31)	76 (13)	39 (13)
Neutropaenia	30 (5)	2 (1)	13 (3)	2 (1)
Thrombocytopaenia	69 (12)	5 (2)	38 (6)	6 (2)

Parker C. N Engl J Med. 2013;369:213-223

| | IIII IIII IIII KING'S HEALTH PARTNERS

Radium 223 survival gain Rationale

- CaP cells metastasise from prostate (A) to bone (B)¹
- Tumour cells circulate via bloodstream from (B) to other skeletal sites (C-E)²
- Metastases move between distant sites rather than as waves from the primary tumour²
- Metastatic spread to non skeletal tissues (F)¹ occurs late and often involves the liver (G)¹

Bone is the source of further metastases

1 Pezaro CJ, et al. Eur Urol. 2014;65:270-273 2 Gundem G, et al. Nature. 2015;520(7547):353-357

| | IIII IIII IIII IIII IIII KING'S HEALTH PARTNERS

2. Monoclonal antibody mediated targeting

Whole antibodies

- High molecular weight
- Slow plasma clearance
- Non specific reticuloendothelial uptake (Fc region)
 - myelosuppression, hepatotoxicity

Antibody fragments

- Shorter serum half life
- Higher tumour penetration
- Improved therapeutic ratio

Protein scaffolds, nanobodies, lysosomes

Isotope	T 1/2	α emission	Vehicle	Phase / Study population
---------	-------	-------------------	---------	--------------------------

- 1. <u>https://www.clinicaltrials.gov/ct2/show/NCT02581878</u>.
- 2. Jurcic JG et al Blood. 2014;124:5293
- 3. Jurcic JG et al *Blood*. 2002;100(4):1233–1239
- 4. Zalutsky MR et al J Nucl Med. 2008;49(1):30–38
- 5. Andersson H et al J Nucl Med. 2009;50(7):1153–1160

* poor in vivo stability

🚺 🕴 💵 🗰 🗰 KING'S HEALTH PARTNERS

3. Peptide / small molecule mediated $T\alpha T$

Prostate specific membrane antigen (PSMA)

- Overexpressed on CaP cells
- Expression correlates with
 - higher tumour grade
 - metastases
 - hormone refractory disease
 - poor outcome
 - Radiolabelled PSMA imaging / therapy

Gallium 68 PSMA PET CT Imaging

Maximum intensity projected image

Transaxial ⁶⁸Ga PSMA CT fusion

Gallium 68 PSMA PET CT Imaging

Maximum intensity projected image

Saggital fusion

Lutetium-177 PSMA

Potential advantage vs ²²³ Ra - target bone and soft tissue metastases

¹⁷⁷Lu PSMA Retrospective German Multicentre Study

- n = 145 mCRPC
- 1- 4 cycles ¹⁷⁷Lu PSMA-617

Primary endpoint >50% PSA decline from baseline

248 ¹⁷⁷Lu PSMA-617 cycles delivered

- **Overall response** 45%
- Adverse events 12% Grade 3-4 haematological toxicity

8% Xerostomia (dry mouth)

First Phase III Open-label, Randomised Controlled Trial ¹⁷⁷Lu-PSMA-617 (VISION)^{1,2}

mCRPC, metastatic castration-resistant prostate cancer; OS, overall survival; PSMA, prostate-specific membrane antigen; RECIST, Response Evaluation Criteria in Solid Tumors; rPFS, radiographic progression-free survival; SSE, symptomatic skeletal event.
 ClinicalTrials.gov. NCT03511664. Available at https://clinicaltrials.gov/ct2/show/NCT03511664?term=Lu-PSMA-617&rank=1. Accessed May 2018. 2. GlobeNewswire. Endocyte Announces Enrollment of First Patient in Phase 3 VISION Trial of 177Lu-PSMA-617 in Prostate Cancer.

🕴 🕨 🚺 🗰 🖬 🖬 🕴 KING'S HEALTH PARTNERS

Actinium-225 PSMA

Limited clinical experience (anecdotal)

Study

Retrospective, observational, singlecentre 225 Ac-PSMA-617 salvage therapy n = 14 patients

PSA response

PSA-response observed in 75% patients No dose-response correlation

Adverse events

Haematological toxicity43 %Dry eyes, dry mouth57 %

KING'S HEALTH PARTNERS

kBq, kilobecquerel; **mCRPC**, metastatic castration-resistant prostate cancer; **PSA**, prostate-specific antigen; **PSMA**, prostate-specific membrane antigen.

Kratochwil C et al. J Nucl Med 2017; 58:1624-1631.

²²⁵Ac PSMA Early clinical experience

Kratochwil C et al J Nucl Med 2016 57:1941-44

²²⁵Ac PSMA Early clinical experience

Kratochwil C et al J Nucl Med 2016 57:1941-44

¹⁷⁷Lu PSMA refractory mCRPC

Serial ⁶⁸Ga PSMA PET CT scans

Kratochwil C et al J Nucl Med 2016 57:1941-44

I IIII IIII IIII IIIII IIIII KING'S HEALTH PARTNERS

- ²¹³ Bi PSMA 617 x 2 cycles
- Cumulative activity 592 MBq
- Molecular imaging response after 11m
- PSA decline 237 ug/L to 43 ug/L

MBq, megabecquerel; **mCRPC**, metastatic castration-resistant prostate cancer; **PSA**, prostate-specific antigen; **PSMA**, prostate-specific membrane antigen

Sathekge M et al. Eur J Nucl Med Mol Imaging 2017;44:1099–1100.

ST1273 patient-derived prostate cancer model

- Double strand DNA breaks
- Upregulated immunogenic cell death markers

LNCaP-luc osseous prostate cancer xenograft model

- Objective tumour regression
- PSA decrease

Single dose PSMA-TTC : strong anti-tumour activity in vivo in

- several prostate cancer xenograft models with variable PSMA expression
- model mimicking prostate cancer with bone metastasis
- models sensitive or resistant to the standard-of-care drug enzalutamide^{1,2}

In vivo stability

PSMA-TTC accumulated selectively in tumours and increased over time

----> Clinical translation feasible

TTC Thorium targeted complex

 $T\alpha T$ peptide receptor therapy

Remarkable responses to Bi-213-DOTATOC observed in tumors resistant to previous therapy with Y-90/Lu-177-DOTATOC

Case I: Shrinkage of liver lesions and bone metastases after i.a. therapy with 11 GBq Bi-213-DOTATOC

Case II: Response of multiple liver lesions after i.a. therapy with 14 GBq Bi-213-DOTATOC

2012 SNMMI Image of the Year Morgenstern A et al SNM 59th Annual Meeting, June 9-13, 2012

I IIII IIII IIIII IIIII IIIIII KING'S HEALTH PARTNERS

²¹³Bi DOTATOC Refractory neuroendocrine tumour

²¹³Bi DOTATOC x 3 cycles

Cumulative activity 4GBq

Kratochwil C et al Eur J Nucl Med Mol Imaging 2014 41: 2016-1911 ALL KING'S HEALTH PARTNERS

>100 α -particle emitters – minority appropriate for medical use

α-particle emitters in clinical trials

Actinium-225 Astatine-211 Bismuth-212/bismuth-213 Radium-223 Thorium-227

Targeting options include

Physiological uptake Chelation and radio conjugation to mAbs, peptides, or small molecules

Changing perspectives

- Cancer defined by molecular phenotype vs site of origin
- Molecular phenotype (biopsy) presumed representative

- Cancer imaging phenotypes tumour-specific probes
 - \rightarrow
- Unique, specific imaging signature: diagnosis, staging, response assessment

Conversion to targeted molecular therapy

Growing T α T potential, single agent and in combination

