Texture features of PET images in cancer research

鄭乃銘

Nuclear Medicine Keelung Chang Gung Memorial Hospital

Texture analysis \rightarrow tumor heterogeneity

Pub Med.gov	PubMed •	texture analysis and PET	
US National Library of Medicine National Institutes of Health	Υ.	Create RSS Create alert Advanced	
Article types Clinical Trial Review	Format: Sum	nmary - Sort by: Most Recent - Per page: 20 -	Send to 、
Customize Text availability Abstract	Search res	20 of 108 << First < Prev Page 1 of 6 Nex	t > Last >>
Free full text Full text	Filters ac	tivated: published in the last 5 years. <u>Clear all</u> to show 135 items.	
PubMed Commons Reader comments Trending articles	1. Lovinfos Lamber Eur J Nu PMID: 29	sse P, Polus M, Van Daele D, Martinive P, Daenen F, Hatt M, Visvikis D, Koopmanso t F, Coimbra C, Seidel L, Albert A, Delvenne P, Hustinx R. cl Med Mol Imaging. 2017 Oct 18. doi: 10.1007/s00259-017-3855-5. [Epub ahead of print] 9046927	:h B,
Pub Med.gov	PubMed •	texture analysis and MRI	
US National Library of Medicine National Institutes of Health		Create RSS Create alert Advanced	
Article types Clinical Trial Review	Format: Sum	nmary - Sort by: Most Recent - Per page: 20 -	Send to 、
Customize	Search res	sults	
Text availability Abstract	Items: 1 to	20 of 335 << First < Prev Page 1 of 17 Nex	t > Last >>
Free full text Full text	Filters ac	tivated: published in the last 5 years. <u>Clear all</u> to show 619 items.	
PubMed Commons Reader comments Trending articles	 Radiom 1. Fetit AE NMR Bio PMID: 29 Similar a 	nics in paediatric neuro-oncology: A multicentre study on MRI texture analysis. E, Novak J, Rodriguez D, Auer DP, Clark CA, Grundy RG, Peet AC, Arvanitis TN. omed. 2017 Oct 26. doi: 10.1002/nbm.3781. [Epub ahead of print] 9073725 rticles	

Outline

- 1. Techniques overview
- 2. Application
- 3. Variations & Limitations

Texture work flow

Original images

Segmentation

Analysis

Techniques

A. Statistical methods:

- 1) Histogram
- 2) Normalized gray-level co-occurrence matrix (NGLCM)
- 3) Neighborhood greytone difference matrix (NGTDM)
- 4) Gray level run length matrix (GLRLM)
- 5) Gray level size zone matrix (GLSZM)
- 6) Shape analysis

B. Fractal analysis

- 1) Box counting
- 2) Fractional Browian motion method
- 3) Power spectral method

C. Transform-based methods

- 1) Wavelet transform
- 2) Laplacian of Gaussian (LoG)

Br J Radiol. 2017;90(1070):20160642

2) Normalized gray level co-occurrence matrix (NGLCM)

Eur Radiol;2015,25:2840

• Parameters:

Uniformity (UNI)

Entropy (ENT)

Dissimilarity (DIS)

Contrast (CON)

Inverse difference (INV)

Inverse difference moment (IDM)

Correlation (COR)

 $\sum C_{ij}^{2}$ $_{-}\sum C_{ij}\, log\, C_{ij}$ $\sum C_{ij} |i - j|$ $\sum C_{ij}(i-j)^2$ $\sum \frac{C_{ij}}{1+|i-j|}$ $\sum \frac{C_{ij}}{1+(i-j)^2}$ $\sum \frac{(i-\mu_x)(j-\mu_y)C_{ij}}{\sigma_x \sigma_y}$

Haralick 1973

3). Neighborhood grey-tone difference matrix (NGTDM)

- Matrix formed by summing the value of the pixel minus the average of the pixels in neighborhood
- Ex: 5x5 image, specify d = 1
 - Neighborhood: w = 3x3

$$- s(0) = |0-(21/8)| = 2.625$$

-s(2) = |2 - (17/8)| + |2 - (15/8)| = 0.250

s(i) 0 2.625 1 4.125 2 0.250 3 0.000 4 4.875

Amadasun 1989

Parameters

Coarseness

$$+\sum_{i=0}^{G_h} p_i s(i) \bigg]^{-1}$$

E

Contrast

$$\left[\frac{1}{N_g(N_g-1)}\sum_{i=0}^{G_h}\sum_{j=0}^{G_h}p_ip_j(i-j)^2\right]\left[\frac{1}{n^2}\sum_{i=0}^{G_h}s(i)\right]\left[\frac{G_h}{\sum}p_is(i)\right]\left[\sum_{i=0}^{G_h}\sum_{j=0}^{G_h}ip_j-jp_j\right]$$

Busyness

$$\left|\sum_{i=0}^{G_h} p_i s(i)\right| \left| \left|\sum_{i=0}^{G_h} \sum_{j=0}^{G_h} i p_i - j p_j\right|\right|$$

Complexity

$$\sum_{i=0}^{G_h} \sum_{j=0}^{G_h} \left\{ (|i-j|) / (n^2(p_i+p_j)) \right\} \left\{ p_i s(i) + p_j s(j) \right\}$$

Strength

$$\sum_{i=0}^{G_{h}} \sum_{j=0}^{G_{h}} (p_{i} + p_{j})(i - j)^{2} \bigg] \bigg/ \bigg[\epsilon + \sum_{i=0}^{G_{h}} s(i) \bigg]$$

Amadasun 1989

Original images

Coarseness

(e)

4) Gray level run length matrix (GLRLM)

 Counting the number of pixel segments having the same intensity in a given direction, then representing the results in a matrix

Image				Gray Level	Ru	Run Length (j)				
		-			(i)	1	2	3	4	
1	2	3	4	=>	1	4	0	0	0	
1	3	4	4		2	1	0	1	0	
3	2	2	2		3	3	0	0	0	
4	1	4	1		4	3	1	0	0	
					2					

Set direction to be 0°

Intensity = 1 & length = 1 \rightarrow 4 Intensity = 2 & length = 1 \rightarrow 1

Tang 1998

5) Gray level size zone matrix (GLSZM)

- Counting the number of pixel areas having the same intensity, then representing the results in a matrix
- No direction needed

- Parameters
 - Short zone emphasis
 - Long zone emphasis

- Grey level variability

$$\frac{1}{n_r} \sum_{i=1}^M \sum_{j=1}^N \frac{p(i,j)}{j^2} = \frac{1}{n_r} \sum_{j=1}^N \frac{p_r(j)}{j^2}$$
$$\frac{1}{n_r} \sum_{i=1}^M \sum_{j=1}^N p(i,j) \cdot j^2 = \frac{1}{n_r} \sum_{j=1}^N p_r(j) \cdot j^2$$
$$\frac{1}{n_r} \sum_{i=1}^M \left(\sum_{j=1}^N p(i,j)\right)^2 = \frac{1}{n_r} \sum_{i=1}^M p_g(i)^2$$

– Size zone variability

$$\frac{1}{n_r} \sum_{j=1}^N \left(\sum_{i=1}^M p(i, j) \right)^2 = \frac{1}{n_r} \sum_{j=1}^N p_r(i)^2$$

(p: point number)

_____,

– Zone percentage

 $\overline{n_p}$ n_r : total runs; n_p : total pixels

 n_r

Tang 1998

- Low-intensity zone emphasis $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{i=1}^{N} \frac{p(i,j)}{i^2} = \frac{1}{n_r} \sum_{i=1}^{M} \frac{p_g(i)}{i^2}$ - High-intensity zone emphasis $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} p(i, j) \cdot i^2 = \frac{1}{n_r} \sum_{i=1}^{M} p_g(i) \cdot i^2$ Low-intensity short-zone emphasis $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{p(i,j)}{i^2 \cdot j^2}$ – High-intensity short-zone emphasis $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{p(i,j) \cdot i^2}{j^2}$ $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{i=1}^{N} \frac{p(i,j) \cdot j^2}{i^2}$ Low-intensity long-zone emphasis $\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} p(i, j) \cdot i^2 \cdot j^2$ High-intensity long-zone emphasis

NGLCM: (R't)

Uniformity: \rightarrow A = 0.347, B = C = 0.278 A > B = C GLRLM: (R't) Run-length variability \rightarrow A = 1.57, B = 4.0, C = 3.33; B > C > A

GLSZM: Size zone variability \rightarrow A = 1.0, B = 2.0, C = 1.33; B > C > A

6) Shape analysis

EC =
$$1 - \sqrt{\frac{b^2}{a^2}}$$

- Eccentricity:
 - Minor axis (b) to the major axis (a) of the best-fitted ellipsoid to the region of interest
- Euler number: E = C H
 - The number of connected objects (C) minus the number of holes (H); E = C H = 1 3
- Convexity:
 - The ratio of perimeters of the convex hull over that of the original contour
 - Convex hull: the smallest convex polygon that can contain the region
- Solidity: S = As / H
 - As: surface area of the object; H: convex hull area
 - The solidity of a convex shape is 1
 - A measurement of convexity
- Extent: Ex = As / Bb
 - As: surface area of the object; Bb: bounding box
 - Bounding box: the smallest rectangle containing the region
- Asphericity (ASP):

For a sphere, H=1, ASP=0

$$ASP = 100 * \left(\sqrt[3]{H} - 1\right) \text{ with } H = \frac{1 S^3}{36\pi V^2}$$

7) Laplacian of Gaussian (LoG)

 ROl1original
 ROl1SSFa
 ROl1SSFb
 ROl2original
 ROl2SSFa
 ROl2SSFb

 Image: Comparison of the state of the

Sci Rep. 2017 Aug 11;7(1):7952

$$\begin{split} \text{SD} &= \; \left\{ \frac{1}{(n-1)} \sum_{(x,y) \in R} \; \left[a(x,y) - \bar{a} \right]^2 \right\}^{\frac{1}{2}}, \\ \text{MPP} &= \; \frac{1}{n_+} \sum_{(x,y) \in R} \left[a_+(x,y) \right], \\ \text{UPP} &= \; \sum_{l=1}^k \left[p(l) \right]^2, \end{split}$$

SSF: spatial scale filter MPP: mean of positive pixels UPP: uniformity of positive pixels

Radiology;2013,266(1):326

PET

Pattern Recognit. 2009 Jun 1;42(6):1162-1171.

Exploring feature-based approaches in PET images for predicting cancer treatment outcomes.

El Naqa I¹, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad W, Deasy JO.

Segmentation	Texture matrix	Results
40% SUV _{max}	8/16/32 bins; Histogram; NGLCM	Shape; Homogeneity _{NGLCM} \rightarrow HNC OS. Energy \rightarrow Cx ca Tx failure

	Cx ca	HNC
Texture-based features		
Energy	0.7245	0.5000
Contrast	0.6020	0.8000
Local homogeneity	0.6224	0.8250
Entropy	0.6531	0.5250
Shape-based features		
Eccentricity	0.6429	0.6500
Euler number	0.6327	0.8500
Solidity	0.7245	0.8500
Extent	0.5612	0.8500

Eur Radiol. 2014 Sep;24(9):2077-87

Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer.

Apostolova I¹, Steffen IG, Wedel F, Lougovski A, Marnitz S, Derlin T, Amthauer H, Buchert R, Hofheinz F, Brenner W.

Segmentation	Texture matrix	Results
Adaptive threshold	Histogram; Shape	MTV; ASP → PFS.

Eur J Nucl Med Mol Imaging. 2016 Jul;43(8):1461-8.

Intratumoral heterogeneity of (18)F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma.

Hyun SH¹, Kim HS¹, Choi SH², Choi DW², Lee JK³, Lee KH³, Park JO³, Lee KH¹, Kim BT¹, Choi JY⁴.

Segmentation	Texture matrix	Results
Gradient-based	64 bins; Histogram; NGTDM; GLRLM; GLSZM	Entropy _{hist} → OS.

Variable	Univariable analysis				Multivariable analysis			
	HR	95 % CI	P value	HR	95 % CI	P value		
Age (1-year increase)	1.01	0.987 - 1.023	0.609	0.99	0.977 – 1.017	0.747		
Sex, men vs. women	1.28	0.878 - 1.889	0.195	1.32	0.893 - 1.970	0.162		
Clinical stage								
IIB vs. IIA	1.88	1.04 - 3.40	0.036	1.79	0.98 - 3.26	0.054		
III-IV vs. IIA	5.17	2.84 - 9.41	< 0.001	3.66	1.95 - 6.87	< 0.001		
Tumour size (cm) ^a	1.28	1.13 - 1.44	< 0.001	1.17	0.99 - 1.37	0.053		
Serum CA19-9 (U/ml, log ₂ scale) ^a	1.13	1.07 - 1.19	< 0.001	1.09	1.03 - 1.15	0.002		
Entropy ^a	12.74	3.42 - 47.42	< 0.001	5.59	1.20 - 25.86	0.028		
TLG (log ₂ scale) ^a	1.28	1.14 - 1.44	< 0.001	0.98	0.81 - 1.19	0.875		

J Nucl Med. 2013 Oct;54(10):1703-9.

Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma.

Cheng NM¹, Fang YH, Chang JT, Huang CG, Tsan DL, Ng SH, Wang HM, Lin CY, Liao CT, Yen TC.

Segmentation	Texture matrix	Results
SUV 2.5	4/16/32/64 bins; Histogram; NGLCM; NGTDM	TLG, Uniformity _{NGLCM} → PFS., DSS., OS.

Multivariate Analysis of PFS, DSS, and OS Rates

	PFS		DSS		OS	
Variable	HR	Р	HR	Р	HR	Р
HPV-positive	0.35 (0.11–1.11)	0.075	0.31 (0.09-1.05)	0.059	0.31 (0.11-0.89)	0.029
≥52 y (median age)	0.37 (0.18-0.75)	0.006	0.43 (0.21-0.88)	0.020	0.58 (0.31-1.08)	0.088
Female vs. male	0.98 (0.09-10.68)	0.985	0.88 (0.08-10.02)	0.917	2.37 (0.46-12.29)	0.304
Tobacco use	1.79 (0.48-6.61)	0.385	1.29 (0.32-5.12)	0.722	1.80 (0.55-5.89)	0.329
T stage						
T4 vs. T3	0.89 (0.38-2.08)	0.782	1.45 (0.57-3.73)	0.436	1.16 (0.52-2.62)	0.713
N stage						
N0-N2a vs. N2b-N3	0.94 (0.38-2.36)	0.901	0.81 (0.32-2.03)	0.646	0.87 (0.38-1.99)	0.747
AJCC stage						
Stage III vs. IVa vs. IVb	1.03 (0.48-2.19)	0.948	1.34 (0.61-2.96)	0.467	0.86 (0.43-1.76)	0.687
PET/CT parameters						
SUV _{max} *	0.99 (0.24-4.01)	0.983	0.60 (0.14-2.64)	0.498	0.56 (0.16-1.97)	0.363
Tumor TLG [†]	7.15 (1.36–37.7)	0.020	7.28 (1.27-41.81)	0.026	5.85 (1.49-22.92)	0.011
Uniformity [‡]	0.32 (0.16-0.64)	0.001	0.28 (0.13-0.57)	0.001	0.46 (0.24-0.87)	0.017

Laryngoscope. 2017 Jan;127(1):E22-E28.

Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr Virus load predicts prognosis in patients with primary nasopharyngeal carcinoma.

<u>Chan SC^{1,2}, Chang KP³, Fang YD⁴, Tsang NM⁵, Ng SH⁶, Hsu CL⁷, Liao CT³, Yen TC^{2,8}.</u>

Segmentation	Texture parameters	Results
SUV 2.5	32/64 bins; Histogram; NGLCM; NGTDM	Skewness _{hist} \rightarrow RFS. Uniformity _{NGLCM} \rightarrow OS.

Multivariate Analysis of Risk Factors in Relation to Overall Survival and Recurrence-Free Survival.

	OS		RFS		
Risk Factor	HR (95% CI)	P Value	HR (95% CI)	P Value	
Age	2.668 (1.345-5.291)	.005	_	N/A	
T classification	_	NS	_	NS	
Tumor stage	_	NS	_	NS	
EBV DNA load	6.284 (2.404-16.421)	.0002	_	N/A	
TLG	_	NS	_	NS	
Skewness	_	NS	0.394 (0.199-0.781)	.008	
Uniformity	0.314 (0.162-0.609)		_	N/A	

J Nucl Med. 2013 Jan;54(1):19-26.

Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?

Cook GJ¹, Yip C, Siddique M, Goh V, Chicklore S, Roy A, Marsden P, Ahmad S, Landau D.

Segmentatio	on Text	ture par	ameters	Re	Results				
45% SUV _{max} 16/32/64/128 bins; Histogram; NGTDM			Coarseness _{NGTDM} → DSS.						
Characteristic	OS Univariable HR	e P	Multivariable HR	P	PFS Univariable HR	P	Multivariable HR	P	
Age*	1.26 (0.86–1.	83) 0.23	1.43 (0.95–2.17)	0.09	1.03 (0.74–1.44)	0.85			
Male sex	1.13 (0.56-2.	28) 0.73			1.29 (0.68-2.46)	0.44			
Stage 1 or 2	1	0.42			1	0.81			
Stage 3a	0.90 (0.32-2.	56)			1.38 (0.51-3.72)				
Stage 3b	1.47 (0.52-4.	16)			1.28 (0.47-3.49)				
Squamous cell carcinoma histology	1.04 (0.48–2.	26) 0.91			0.86 (0.44–1.69)	0.67			
SUVpeak [†]	0.87 (0.63-1.	18) 0.36			0.87 (0.65-1.16)	0.34			
TLG [‡]	0.93 (0.72-1.	21) 0.59			0.82 (0.64-1.05)	0.11	1.06 (0.74-1.51)	0.76	
High coarseness	3.48 (1.41-8.	63) 0.007	4.86 (1.32-17.9)	0.02	3.18 (1.48-6.85)	0.003	2.41 (0.82-7.09)	0.11	
High contrast	0.47 (0.20-1.	10) 0.08	1.11 (0.41-2.99)	0.84	0.40 (0.19-0.85)	0.02	0.60 (0.24-1.48)	0.27	
High busyness	0.51 (0.25-1.	04) 0.06	1.12 (0.44-2.92)	0.80	0.46 (0.24-0.88)	0.02	0.97 (0.37-2.53)	0.95	
High complexity	0.59 (0.28-1.	25) 0.17	1.11 (0.43-2.87)	0.82	0.61 (0.32-1.18)	0.17	0.87 (0.40-1.92)	0.73	

Eur J Nucl Med Mol Imaging. 2017 Oct 18. doi: 10.1007/s00259-017-3855-5. [Epub ahead of print]

FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer.

Lovinfosse P¹, Polus M², Van Daele D², Martinive P³, Daenen F⁴, Hatt M⁵, Visvikis D⁵, Koopmansch B⁶, Lambert F⁶, Coimbra C⁷, Seidel L⁸, Albert A⁸, Delvenne P⁹, Hustinx R¹⁰.

Segmentation	Texture parameters	Results
FLAB	64 bins; Histogram; NGLCM; NGTDM; GLSZM	Coarseness _{NGTDM} → DSS.

Parameter	Univariate			Multivariat	e	
	P-value	HR	95% CI	P-value	HR	95% CI
Weight loss	0.0048	19.7	2.48-156	0.020	13.9	1.52-128
CA 19-9 > 37 U/ml	0.011	7.17	1.56-33			
Differentiation	0.0067	5.17	1.58-16.9			
сТ	0.0003	12	3.07-46.7			
Surgery	0.0098	0.17	0.04-0.65	0.0022	0.07	0.01-0.38
TLG	0.0073	6.44	1.65-25.1			
ASM	0.011	0.18	0.05-0.68			
Contrast _{GLCM}	0.027	0.10	0.01-0.77			
Entropy	0.0024	7.93	2.08-30.2			
Correlation	0.015	13.2	1.64-106			
Dissimilarity	0.033	0.11	0.01-0.84			
Coarseness	0.0037	10.2	2.13-49.2	0.024	7.06	1.29-38.7
Contrast _{NGTDM}	0.024	0.09	0.01-0.72			
Busyness	0.031	5.57	1.17-26.4			
Intensity variability	0.015	14.1	1.69-117			
Size zone variability	0.036	0.24	0.07-0.92			

FLAB (fuzzy locally adaptive Bayesian)

Eur J Nucl Med Mol Imaging. 2015 Mar;42(3):419-28.

Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer.

Cheng NM¹, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, Wang HM, Liao CT, Yang LY, Hsu CH, Yen TC.

Segmentation	Texture parameters	Results
SUV 2.5; 42% SUV _{max} ; Adaptive threshold	64 bins; Histogram; GLRLM; GLSZM	Size-zone variability _{GLSZM} \rightarrow PFS., DSS. Uniformity _{NGLCM} \rightarrow PFS., DSS

 Table 2
 Multivariate Cox regression analysis of progression-free survival rate

Characteristic	Dichotomized variables	Continuous variables		
	Hazard ratio (95 % confidence interval)	P value	Hazard ratio (95 % confidence interval)	P value
Textural parameters				
Uniformity	0.27 (0.14 - 0.53)	< 0.001	$0.05 (0.01 - 0.26)^{a}$	< 0.001
Zone-size nonuniformity (16 bins)	4.38 (1.69 - 11.34)	0.002	1.64 (1.24 – 2.17) ^b	0.001
HPV positivity	0.65 (0.24 - 1.78)	0.400	0.80 (0.30 - 2.13)	0.654
Age >50 years	0.58 (0.28 - 1.22)	0.152	0.48 (0.23 - 1.00)	0.050
Tobacco use	2.96 (0.64 - 13.69)	0.164	2.36 (0.53 - 10.54)	0.262
Alcohol use	1.57(0.60 - 4.10)	0.362	2.11 (0.78 - 5.74)	0.143
T stage				
T4 vs. T3	1.50 (0.66 - 3.39)	0.332	1.11 (0.48 - 2.58)	0.808
N stage				
N0-N2a vs. N2b-N3	1.82 (0.62 - 5.32)	0.275	2.15 (0.73 - 6.38)	0.167
AJCC stage	25. T2		68 (5)	
Stage III vs. IVa vs. IVb	0.84 (0.43 - 1.62)	0.596	0.71 (0.35 - 1.42)	0.332

Eur J Nucl Med Mol Imaging. 2017 Aug 3. doi: 10.1007/s00259-017-3787-0. [Epub ahead of print]

A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who received surgery.

Segmentation	Texture parameters 64 bins; Histogram; NGLCM; GLSZM			ation Texture parameters Results				
SUV 2.5				FDG size-zone v FDG Intensity va	variability _G ariability _{GL}	_{SLSZM} → PFS _{SZM} → PFS.	S.	
⁸ F-FDG-PET/CT	·							
SUVmax	0.89	0.74-1.07	0.21	F-FLI-PEI/CI	1.10	0.84 1.44	0.47	
SUVmean	0.78	0.55-1.11	0.17	SUVmaan	1.10	0.53 2 11	0.47	
MTV	1.94	0.46-8.11	0.37	MTV	1.00	0.08 1 10	0.87	
TLG	1.14	0.28-4.54	0.86	TIP	1.04	0.99-1.03	0.16	
COV	0.89	0.71-1.12	0.33	COV	0.02	0.52 1.63	0.20	
Entropy	7.92	0.87-72.09	0.066	Entropy	13.66	1.05 177 77	0.78	
Homogeneity	2.91	0.06-146.14	0.59	Homogeneity	1.94	0.46.8.11	0.040	
Dissimilarity	1.08	0.88-1.32	0.45	Dissimilarity	0.00	0.70 1.25	0.57	
IV	1.13	1.06-1.21	< 0.001	IV	1.07	0.01 1.27	0.95	
SZV	1.006	1.002-1.010	0.002	SZV	1.002	0.996 1.010	0.38	
ZP	0.10	0.01-41.86	0.45	7P	0.03	0.01_74.11	0.30	

<u>Nakajo M¹, Kajiya Y², Tani A³, Jinguji M³, Nakajo M², Kitazono M⁴, Yoshiura T³.</u>

MR Radiology. 2017 Mar;282(3):665-675.

Breast Cancer Heterogeneity: MR Imaging Texture Analysis and Survival Outcomes.

<u>Kim JH¹, Ko ES¹, Lim Y¹, Lee KS¹, Han BK¹, Ko EY¹, Hahn SY¹, Nam SJ¹.</u>

Segmentation	Texture parameters	Results
Manual T2W; DCE T1	256 bins; Histogram	T1, T2 entropy _{hist} → RFS.

Multivariate Cox Proportional Hazard Analysis of Survival Outcomes

	RFS		
Variable	Hazard Ratio	<i>P</i> Value	
N stage			
0	Reference category		
1	3.32 (0.92, 11.99)	.068	
2	11.63 (2.34, 57.85)	.003	
3	11.15 (2.40, 51.85)	.002	
Breast parenchymal enhancement level			
1	Reference category		
2	2.75 (0.88, 8.64)	.083	
3	1.11 (0.22, 5.66)	.904	
4	0 (0, 0)	.994	
Mass shape			
Round or oval	Reference category		
Irregular	2.35 (0.78, 7.12)	.131	
Mass margin			
Circumscribed	Reference category		
Not circumscribed	3.37 (0.59, 19.21)	.172	

Internal enhancement		
Homogeneous	Reference category	
Heterogeneous	1.839193 (0, 0)	.992
Rim enhancement	8.83456 (0, 0)	.992
Molecular subtype		
Luminal A	Reference category	
Luminal B	1.65 (0.46, 6.00)	.445
HER2 enriched	0.77 (0.08, 7.27)	.821
Triple negative	16.91 (3.58, 79.82)	<.001
Adjuvant chemotherapy		
No	2.61 (0.73, 9.43)	.142
Yes	Reference category	
T1 entropy		
Low risk	Reference category	
High risk	4.55 (1.29, 16.13)	.018
T2 entropy		
High risk	9.84 (2.60, 37.26)	.001
Low risk	Reference category	

Radiology. 2017 Sep;284(3):748-757.

Endometrial Carcinoma: MR Imaging-based Texture Model for Preoperative Risk Stratification-A Preliminary Analysis.

Ueno Y¹, Forghani B¹, Forghani R¹, Dohan A¹, Zeng XZ¹, Chamming's F¹, Arseneau J¹, Fu L¹, Gilbert L¹, Gallix B¹, Reinhold C¹.

Manual T2W; DCE;LoGDeep myometrial invasion (DMI); Lymphovascular space invasion (LVS)	21)
DWI	<i>)</i>)
Outcome and Type of Image Feature SSF Feature Importance	
LVSI	
T2 weighted Kurtosis 2 0.031	
DCE (delayed) Kurtosis 5 0.024	
T2 weighted Mean 5 0.022	
ADC map Entropy 6 0.018	
DCE Mean of positive pixels 6 0.013	
ADC map Entropy 4 0.013	
T2 weighted Mean 4 0.012	
ADC map Mean of positive pixels 4 0.012	
T2 weighted Mean 2 0.009	
ADC map Standard deviation 2 0.008	
ADC map Entropy 5 0.007	
DCE (second) Mean 0 0.006	

PET/MRI

Eur Radiol. 2017 Jun 12. doi: 10.1007/s00330-017-4877-x. [Epub ahead of print]

Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

Bates A^{1,2}, Miles K^{3,4}.

Segmentation	Texture parameters	Results
Manual T2W	LoG	Lower MPP, SD in PSMA (+) slices

IM: 14/05/20 14-58-1

	PSMA-negative median value and (range)	PSMA-positive median value and (range)	p-value	AUC
MPP	279 (84.4 to 496)	211 (76.0 to 454)	<0.0001	0.726
	289 (81.3 to 748)	217 (57.6 to 538)	< 0.0001	0.736
	287 (71.8 to 807)	210 (63.1 to 693)	<0.0001	0.756
	282 (44.7 to 775)	202 (64.1 to 760)	<0.0001	0.736
	276 (45.5 to 621)	195 (53.6 to 855)	<0.0001	0.755
SD	352 (162 to 513)	284 (133 to 591)	<0.000	0.686
	371 (179 to 627)	297 (145 to 753)	<0.000	0.706
	374 (218 to 669)	306 (139 to 870)	<0.000	0.706
	367 (211 to 691)	306 (132 to 921)	<0.000	0.7
	355 (185 to 703)	310 (139 to 913)	0.000	0.755

Variations & Limitations

Original images

Segmentation

Processing

Analysis

Original images

PET reconstruction parameters

Acta Oncologica, 2010; 49: 1012

Reconstruction algorithm	Variation over the default reconstruction settings	Impact of iteration number on image features (FWHM: 2.5 mm; grid size: 256 × 256	Impact of FWHM on image features (iteration: 2; grid size: 256 × 256)	Impact of grid size on image features (iteration: 2; FWHM: 2.5 mm)
OSEM	Iteration: 2; FWHM: 2.5 mm; grid size: 256 × 256	Iteration: 1, 2, 3	FWHM: 2.5, 3.5, 4.5, 5.5 mm	Grid size: 256 × 256; 128 × 128
OSEM + PSF	Iteration: 2; FWHM: 2.5 mm; grid size: 256 × 256	Iteration: 1, 2, 3	FWHM: 2.5, 3.5, 4.5, 5.5 mm	Grid size: 256 × 256; 128 × 128
OSEM + TOF	Iteration: 2; FWHM: 2.5 mm; grid size: 256 × 256	Iteration: 1, 2, 3	FWHM: 2.5, 3.5, 4.5, 5.5 mm	Grid size: 256 × 256; 128 × 128
OSEM + PSF + TOF	Iteration: 2; FWHM: 2.5 mm; grid size: 256 × 256	Iteration: 1, 2, 3	FWHM: 2.5, 3.5, 4.5, 5.5 mm	Grid size: 256 × 256; 128 × 128

 $COV = SD/mean \times 100(\%)$

Impact of FWHM on Image Features

Feature	$\text{COV} \le 5\%$	$5\% < \text{COV} \le 10\%$	$10\% < \text{COV} \le 20\%$	$\mathrm{COV}>20\%$
SUV		SUV _{mean} , SUV _{peak}	SUV _{max}	
FOS	Entropy	COV, kurtosis, energy		Variance, skewness
GLCM	Energy, entropy, ID, SE, DE, IMC, IDN, IDMN, DM	Dissimilarity, homogeneity, MP, SA, SDN	Autocorrelation, contrast, correlation, SOS, SV, DV	CS
GLRLM	GLNr, RP, <u>LGRE, HGRE</u>	RLN	SRE, LRE, SRLGE, SRHGE, LRLGE, LRHGE	
GLSZM	LGZE	<u>GLNz,</u> ZLN, HGZE	LZE, SZHGE, LZLGE, WVGLZ_N, WVGLZ_S	SZE, ZP, SZLGE, LZHGE
NGLDM	Entropy	SNE, NN, SM	LNE	
NGTDM		<u>TS</u>	Coarseness, contrast, busyness	Complexity

J Nucl Med. 2015;56(11):1667

Segmentation

- SUV 2.5
- Fixed %:
 - T30, T40, T42, T45, T50, T60
- Adaptive threshold
 - Background varied
- Automatic:
 - FLAB, regional growing
- Which threshold best for prediction survival?
 - − SUV: 5.5-7.0 or 40%-68% of SUV_{max} \rightarrow **NO** major impact on the predictive value of MTV in OPSCC

Processing

• Fixed bins vs. fixed width

- Fixed bins:
 - Highly correlated with tumor volume

PLoS One. 2015;10(12):e0145063

- Double baselines studies
 - Fixed bins:
 - More reliable in PET
 - Fixed width
 - More reliable in CT of PET/CT

		Bland-Altman analysis		ICC
		Mean (%)	S.D. (%)	
SUVmax		3.5	19.3	0.964
SUV mean		3.0	17.0	0.970
MTV		-1.4	11.1	0.997
Aspericity		0.3	10.0	0.946
Entropy_fos		0.1	4.0	0.991
Entropy_ _{NGLCM}	64 bins	-0.1	2.6	0.984
	Fixed 0.5 SUV	5.7	22.6	0.969
Uniformity	64 bins	-0.5	18.6	0.949
	Fixed 0.5 SUV	-11.3	41.8	0.904
ZSNU	64 bins	-1.1	13.7	0.995
	Fixed 0.5 SUV	2.1	2.3	0.988

J Nucl Med. 2017;58(3):406

Radiology. 2017 Aug;284(2):552-561. d

Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features.

<u>Gourtsoyianni S¹, Doumou G¹, Prezzi D¹, Taylor B¹, Stirling JJ¹, Taylor NJ¹, Siddique M¹, Cook GJR¹, Glynne-Jones R¹, Goh V¹.</u>

- Double baseline T2W
 - Coefficient of variation (COV), repeatability coefficient (r)

• Better repeatability for histogram parameters

Parameter and				Repeatability			Repeatability	
Reader	wCV (%)	Repeatability Coefficient	Parameter and Rea	der wCV (%)	Coefficient	Parameter and Reade	wCV (%)	Coefficient
Mean		Entropy			Coarseness			
Reader 1	8.85	47.28	Reader 1	5.73	0.64	Reader 1	19.43	44.76
Reader 2	9.05	49.36	Reader 2	5.40	0.58	Reader 2	9.08	14.34
Median			Homogeneity			Contrast		
Reader 1	8.69	45.22	Reader 1	5.87	0.094	Reader 1	34.70	0.0099
Reader 2	9.12	48.21	Reader 2	3.38	0.058	Reader 2	45.25	0.008
Skewness			Energy			Busyness		
Reader 1	25.23	0.64	Reader 1	27.63	0.028	Reader 1	48.42	2.05
Reader 2	27.67	0.87	Reader 2	21.18	0.030	Reader 2	26.71	1.18
Kurtosis		Contrast			Complexity			
Reader 1	17.73	2.79	Reader 1	21.00	3.39	Reader 1	85.10	0.02
Reader 2	26.50	5.25	Reader 2	24.35	3.24	Reader 2	19.81	0.004
Entropy						Texture strength		
Reader 1	2.97	0.41				Reader 1	32.3	1.43
Reader 2	2.40	0.34				Reader 2	38.3	0.61

- Histogram features = global features = FOS
- NGLCM = 2nd order texture features = local features
 = Haralick features
 - Uniformity = energy = 2nd angular moment
 - Contrast = inertia
- GLRLM, GLSZM = regional features
- Software
 - Black-box
- Texture features highly inter-correlated
 - Over-fitting
- Retrospectively studies
 - External validation
 - Traing-validation
 - Leave-one-out cross validations
- Biological interpretation

J Nucl Med. 2016 Nov;57(11):1823-1828.

Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images.

<u>Orlhac F¹, Thézé B², Soussan M^{2,3}, Boisgard R², Buvat I².</u>

Texture index	VOI-PET vs. VOI-AR	VOI-H vs. VOI-AR	VOI-H vs. VOI-PET
Homogeneity	0.66*	-0.18	-0.23
Entropy	0.57*	0.31	0.13
SRE	0.67*	-0.25	-0.13
LRE	0.70*	-0.41*	-0.54*
LGZE	0.83*	-0.23	-0.06
HGZE	0.85*	0.32	0.29
Maximum intensity	0.75*	0.20	0.09

**P* < 0.05.

AR: autoradiography H: histology

Eur J Nucl Med Mol Imaging. 2017 Apr;44(4):567-580.

Correlation of pretreatment 18F-FDG PET tumor textural features with gene expression in pharyngeal cancer and implications for radiotherapy-based treatment outcomes.

<u>Chen SW^{1,2,3,4}</u>, <u>Shen WC^{5,6}</u>, <u>Lin YC^{1,7}</u>, <u>Chen RY⁸</u>, <u>Hsieh TC^{9,10}</u>, <u>Yen KY^{9,10}</u>, <u>Kao CH^{11,12,13}</u>.

Cell. 2016 Feb 11;164(4):681-94.

Metabolic Heterogeneity in Human Lung Tumors.

Hensley CT¹, Faubert B¹, Yuan Q², Lev-Cohain N³, Jin E⁴, Kim J¹, Jiang L¹, Ko B¹, Skelton R⁵, Loudat L⁵, Wodzak M⁶, Klimko C¹, McMillan E⁷, Butt Y⁸, Ni M¹, Oliver D⁸, Torrealba J⁸, Malloy CR⁹, Kernstine K¹⁰, Lenkinski RE¹¹, DeBerardinis RJ¹².

Science. 2004;305(5682):402

Software

Google Code Archive Q Search this site Projects Search About Project cgita Source Issues Chang-Gung Image Texture Analysis toolbox **Project Information** Wikie 生醫資訊分析與整合實驗室 實驗室介紹 論文發表 軟體開發 聯絡我們 English website 實驗室介紹 > 導覽 ▼ 實驗室介紹 指導老師 指導老師 **管驗**室成員 研究方向 研究計畫 獲獎紀錄 方佑華 Yu-Hua Dean Fang 關於實驗室Q&A 畢業校友 實驗室招生 聯絡方式 論文發表 軟體開發 方老師的心海羅盤 成功大學醫工所二樓 辦公室位置 相關連結 +886-6-2757575 ext. 63434 電話 聯絡我們 Email 校内信箱 Gmail

Conclusions

- Texture analysis
 - Promising
 - Deal with caution
 - Validation

THANK YOU